

Reducing Biological Landfill Leachate Footprint via Rapid Electrochemical-UV Treatment

Prof. CHEN Guanghao & CNERC Research Team

Identifying the Current Treatment Problems

Problem 1

Source: Landfills

Leachate treatments demand large footprints and long retention times

Problem 2

Treated Effluent

The **toxic** leachate is mixed with sewage, posing health risks

Problem 3

Downstream Treatment

Untreated refractory organics in leachate absorb UV, increasing disinfection cost and decreasing UV lamp life

Landfill Leachate Treatment Process

Existing Technologies:

Biological Treatment	Chemical Treatment	Physical Treatment	Electrochemical Treatment
Inexpensive (< 5 USD m ⁻³)	High UV ₂₅₄ absorbance removal	Highest UV ₂₅₄ absorbance reduction	High removal efficiency with no external dosing
Poor efficiency for UV ₂₅₄ removal	External dose-dependent Generates additional sludge	Expensive to operate and maintain Generates additional concentrated waste	High energy consumption (20 – 40 USD m ⁻³)

We Propose: ECO® - Electrochemical-Cycled Oxidation

ECO® in the Process Line

Bypassed Influent

Trial Stage

- Installed after biological process
- Ameliorates toxicity: Problem 2 √
- Reduces UV₂₅₄ absorbance: Problem 3 √

Optimization Stage

- ECO® influent taken directly after ASP
- Bypasses biological process
- Reduces biological treatment costs and volume: Problem 1

Early Prototype Trial

ECO® brings 4 solutions:

Biological Process

Objective: Reduce reactor volumes and footprints

Strategy: By bypassing the biological process, ECO® minimises **aeration energy** and volume used

Toxicity

Objective: Reduce health risks from leachate exposure

Strategy: ECO®'s electrochemical treatment **degrades** the toxic components

UV Absorbance

Objective: Increase operative life of UV disinfection lamps

Strategy: ECO® reduces the UV₂₅₄ absorbance of leachate by >80% in under 30 minutes

Sustainability

Objective: Reduce waste generation and additives used

Strategy: As a compact design, ECO® does not require chemical dosing, nor produces sludge.

Deliverables:

Aeration Energy

Space

Chemical Dosing

